تخمین حالت و همتراز سازی مدل های سه بعدی با کمینه سازی تابع خطا در تصاویر سایه نما

Authors

  • حسین ابراهیم نژاد دانشگاه صنعتی سهند، دانشکده مهندسی برق، آزمایشگاه تحقیقاتی بینایی کامپیوتر
  • محمد رمضانی دانشگاه صنعتی سهند، دانشکده مهندسی برق، آزمایشگاه تحقیقاتی بینایی کامپیوتر
Abstract:

امروزه با توجه به رشد روز افزون مدل¬های سه بعدی در رسانه های دیجیتال و به خصوص اینترنت، نیاز به یک سیستم یک پارچه جستجوی مدل های سه بعدی به شدت احساس می شود.  از آنجائیکه بسیاری از توصیف گرهای مورد استفاده در این زمینه نسبت به تغییرات و تبدیلات تشابه، بدون تغییر نیستند، هم تراز کردن مدل های سه بعدی یکی از مهمترین گام های رسیدن به یک سیستم بازیابی و یا تشخیص مدل های سه بعدی با دقت بالا می باشد. بنابراین، در این مقاله، روشی برای تخمین حالت های مختلف یک مدل سه بعدی مثلثی در فضای سه بعدی با استفاده از الگوریتم بهینه سازی Nelder-Mead، ارائه می شود. روش ارائه شده در این مقاله به این صورت می باشد که پس از انجام استانداردسازی  مدل های مورد بررسی به لحاظ موقعیت و تغییرات مقیاس، به منظور هم ترازسازی  مدل های سه بعدی از نقطه نظر چرخش، در هر کلاس از مدل های موجود در پایگاه داده مورد بررسی، یکی از مدل های سه بعدی به عنوان الگو در نظر گرفته شده و بقیه مدل ها طوری در فضای سه بعدی دوران داده می شوند که به بهترین حالت ممکن برای انطباق با مدل الگو دست یابند. تابع هزینه ای که در الگوریتم مذکور بهینه می شود برابر میزان اختلاف مساحت سایه نماهای حاصله از مدل سه بعدی مورد نظر در زاویه های دید متناظر است. جهت بررسی صحت روش ارائه شده، از مدل های سه بعدی موجود در پایگاه داده McGill، استفاده شده است. نتایج کمی به دست آمده از آزمایشهای مختلف، بیانگر موفقیت الگوریتم پیشنهادی در هم تراز سازی مدل های مورد بررسی می باشد. بطور مثال، برای مدل سه بعدی هواپیما با بکارگیری تصاویر سایه نما با ابعاد 256*256پیکسل، خطای کمینه (مجموع مساحت ناحیه غیر همپوشان سایه نماهای متناظر) در بهترین حالت به مقدار 36437 پیکسل می رسد که این خطا معادل 8/6%  مجموع مساحت سایه نماهای دو مدل سه بعدی مورد بررسی (ثابت و متحرک) می باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تخمین چنددوربینی حالت سه بعدی انسان با برازش افکنش مدل اسکلت سه بعدی مفصل دار در تصاویر سایه نما

Automatic capture and analysis of human motion, based on images or video is important issue in computer vision due to the vast number of applications in animation, surveillance, biomechanics, Human Computer Interaction, entertainment and game industry. In these applications, it is clear that 3D human pose estimation is an essential part. Therefore, its accuracy has a great effect on the perform...

full text

مدل سازی اجزاء محدود سه بعدی پای انسان در حالت ایستادن متعادل

در این مطالعه مدل اجزاء محدود سه­بعدی از ساختمان پا، به واسطه‌ی بازسازی تصاویر سی­تی ایجاد شده است. مدل حاضر شامل 19 استخوان، 114 لیگامنت و فاشیای پلانتار می­باشد که در حجمی از بافت نرم محصور می­گردند. با تعریف شرایط مرزی و بارگذاری مناسب و همچنین در نظر گرفتن برهم‌کنش‌های مفصلی، حالت ایستادن متعادل شبیه­سازی شده است. در این مطالعه توزیع فشار تماسی در سطح پلانتار پا و همچنین توزیع تنش در ساختار...

full text

مدل سازی اقتصاد سایه ای و تخمین فرار مالیاتی در ایران با استفاده از شبکه عصبی مصنوعی

بخش عمده ای از منابع درآمدی دولت، از طریق مالیات تامین می شود. فرار مالیاتی و گریز از مالیات در کشورها باعث شده است تا درآمدهای مالیاتی کشورها، همواره از آنچه که برآورد می شود، کمتر باشد و تمامی کشورها تلاش خود را برای کاهش این دو پدیده به کار می گیرند یا از طریق اصلاح نظام مالیاتی، به چاره جویی برمی خیزند. در این مقاله با استفاده از تکنیک شبکه عصبی مصنوعی به بررسی و مدل سازی حجم اقتصاد پن...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  28- 43

publication date 2013-08-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023